新一輪中考復(fù)習(xí)備考周期正式開(kāi)始,中考網(wǎng)為各位初三考生整理了中考五大必考學(xué)科的知識(shí)點(diǎn),主要是對(duì)初中三年各學(xué)科知識(shí)點(diǎn)的梳理和細(xì)化,幫助各位考生理清知識(shí)脈絡(luò),熟悉答題思路,希望各位考生可以在考試中取得優(yōu)異成績(jī)!下面是《2018初中數(shù)學(xué)學(xué)習(xí)方法:函數(shù)與方程的思想》,僅供參考!
初中數(shù)學(xué)學(xué)習(xí)方法:函數(shù)與方程的思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問(wèn)題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過(guò)求解或利用方程的性質(zhì)去分析解決問(wèn)題。
初中數(shù)學(xué)解題方法:數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問(wèn)題、三角問(wèn)題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問(wèn)題;而某些幾何問(wèn)題也往往可以通過(guò)數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對(duì)問(wèn)題的解決有舉足輕重的作用。
初中數(shù)學(xué)解題方法:分類討論的思想
分類討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R(shí)點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問(wèn)題的能力。原因四是實(shí)際問(wèn)題中常常需要分類討論各種可能性。
解決分類討論問(wèn)題的關(guān)鍵是化整為零,在局部討論降低難度。常見(jiàn)的類型:類型 1 :由數(shù)學(xué)概念引起的的討論,如實(shí)數(shù)、有理數(shù)、絕對(duì)值、點(diǎn)(直線、圓)與圓的位置關(guān)系等概念的分類討論;類型 2 :由數(shù)學(xué)運(yùn)算引起的討論,如不等式兩邊同乘一個(gè)正數(shù)還是負(fù)數(shù)的問(wèn)題;類型 3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問(wèn)題引起的討論。類型 5 :由某些字母系數(shù)對(duì)方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對(duì)圖象的影響,二次項(xiàng)系數(shù)對(duì)圖象開(kāi)口方向的影響,一次項(xiàng)系數(shù)對(duì)頂點(diǎn)坐標(biāo)的影響,常數(shù)項(xiàng)對(duì)截距的影響等。
分類討論思想是對(duì)數(shù)學(xué)對(duì)象進(jìn)行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問(wèn)題。分類的原則:分類不重不漏。分類的步驟:①確定討論的對(duì)象及其范圍;②確定分類討論的分類標(biāo)準(zhǔn);③按所分類別進(jìn)行討論;④歸納小結(jié)、綜合得出結(jié)論。注意動(dòng)態(tài)問(wèn)題一定要先畫(huà)動(dòng)態(tài)圖。
初中數(shù)學(xué)解題方法:轉(zhuǎn)化與化歸的思想
轉(zhuǎn)化與化歸市中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
但是轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過(guò)程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問(wèn)題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)為具體的和直觀的問(wèn)題;將復(fù)雜的轉(zhuǎn)為簡(jiǎn)單的問(wèn)題;將一般的轉(zhuǎn)為特殊的問(wèn)題;將實(shí)際的問(wèn)題轉(zhuǎn)為數(shù)學(xué)的問(wèn)題等等使問(wèn)題易于解決。
但是轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過(guò)程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問(wèn)題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)為具體的和直觀的問(wèn)題;將復(fù)雜的轉(zhuǎn)為簡(jiǎn)單的問(wèn)題;將一般的轉(zhuǎn)為特殊的問(wèn)題;將實(shí)際的問(wèn)題轉(zhuǎn)為數(shù)學(xué)的問(wèn)題等等使問(wèn)題易于解決。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看