來源:中考網(wǎng)整理 作者:中考網(wǎng)編輯 2018-11-14 16:05:22
如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙上一點,連接PD.已知PC=PD=BC.下列結論:
(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正確的個數(shù)為()
A.4個B.3個C.2個D.1個
分析:(1)利用切線的性質(zhì)得出∠PCO=90°,進而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;
(2)利用(1)所求得出:∠CPB=∠BPD,進而求出△CPB≌△DPB(SAS),即可得出答案;
(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),進而得出CO=PO=AB;
(4)利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.
解:(1)連接CO,DO,
∵PC與⊙O相切,切點為C,∴∠PCO=90°,
在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,
∴PD與⊙O相切,故此選項正確;
(2)由(1)得:∠CPB=∠BPD,
在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),
∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故此選項正確;
(3)連接AC,
∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,
在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),
∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,
∴CO=PO=AB,∴PO=AB,故此選項正確;
(4)∵四邊形PCBD是菱形,∠CPO=30°,
∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故此選項正確;故選:A.
點評:此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關鍵.
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看