中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 中考備考 > 中考復(fù)習(xí) > 中考數(shù)學(xué) > 正文

2019年中考數(shù)學(xué)知識點(diǎn):軸對稱

來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-18 13:46:29

中考真題

智能內(nèi)容

新一輪 復(fù)習(xí)備考周期正式開始, 為各位初三考生整理了各學(xué)科的復(fù)習(xí)攻略,主要包括中考必考點(diǎn)、中考?贾R點(diǎn)、各科復(fù)習(xí)方法、考試答題技巧等內(nèi)容,幫助各位考生梳理知識脈絡(luò),理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《 數(shù)學(xué)知識點(diǎn):軸對稱》,僅供參考!

軸對稱

軸對稱的定義:

把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合 ,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)。軸對稱和軸對稱圖形的特性是相同的,對應(yīng)點(diǎn)到對稱軸的距離都是相等的。

軸對稱的性質(zhì):

(1)對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分;

(2)對應(yīng)線段相等,對應(yīng)角相等;

(3)關(guān)于某直線對稱的兩個圖形是全等圖形。

軸對稱的判定:

如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

這樣就得到了以下性質(zhì):

1.如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

2.類似地,軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

3.線段的垂直平分線上的點(diǎn)與這條線段的兩個端點(diǎn)的距離相等。

4.對稱軸是到線段兩端距離相等的點(diǎn)的集合。

軸對稱作用:

可以通過對稱軸的一邊從而畫出另一邊。

可以通過畫對稱軸得出的兩個圖形全等。

擴(kuò)展到軸對稱的應(yīng)用以及函數(shù)圖像的意義。

軸對稱的應(yīng)用:

關(guān)于平面直角坐標(biāo)系的X,Y對稱意義

如果在坐標(biāo)系中,點(diǎn)A與點(diǎn)B關(guān)于直線X對稱,那么點(diǎn)A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。

相反的,如果有兩點(diǎn)關(guān)于直線Y對稱,那么點(diǎn)A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。

關(guān)于二次函數(shù)圖像的對稱軸公式(也叫做軸對稱公式 )

設(shè)二次函數(shù)的解析式是 y=ax2+bx+c

則二次函數(shù)的對稱軸為直線 x=-b/2a,頂點(diǎn)橫坐標(biāo)為 -b/2a,頂點(diǎn)縱坐標(biāo)為 (4ac-b2)/4a

在幾何證題、解題時,如果是軸對稱圖形,則經(jīng)常要添設(shè)對稱軸以便充分利用軸對稱圖形的性質(zhì)。

譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;

矩形和等腰梯形問題經(jīng)常添設(shè)對邊中點(diǎn)連線和兩底中點(diǎn)連線;

正方形,菱形問題經(jīng)常添設(shè)對角線等等。

另外,如果遇到的圖形不是軸對稱圖形,則常選擇某直線為對稱軸,補(bǔ)添為軸對稱圖形,

或?qū)⑤S一側(cè)的圖形通過翻折反射到另一側(cè),以實(shí)現(xiàn)條件的相對集中。

   歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考壓軸題

中考模擬題

各科練習(xí)題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識點(diǎn)

初中數(shù)學(xué)知識點(diǎn)

初中物理知識點(diǎn)

初中化學(xué)知識點(diǎn)

初中英語知識點(diǎn)

初中語文知識點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科