01
三角形中常見(jiàn)輔助線(xiàn)的添加
1. 與角平分線(xiàn)有關(guān)的
。1) 可向兩邊作垂線(xiàn)。
。2)可作平行線(xiàn),構(gòu)造等腰三角形
。3)在角的兩邊截取相等的線(xiàn)段,構(gòu)造全等三角形
2. 與線(xiàn)段長(zhǎng)度相關(guān)的
。1)截長(zhǎng):證明某兩條線(xiàn)段的和或差等于第三條線(xiàn)段時(shí),經(jīng)常在較長(zhǎng)的線(xiàn)段上截取一段,使得它和其中的一條相等,再利用全等或相似證明余下的等于另一條線(xiàn)段即可
。2)補(bǔ)短:證明某兩條線(xiàn)段的和或差等于第三條線(xiàn)段時(shí),也可以在較短的線(xiàn)段上延長(zhǎng)一段,使得延長(zhǎng)的部分等于另外一條較短的線(xiàn)段,再利用全等或相似證明延長(zhǎng)后的線(xiàn)段等于那一條長(zhǎng)線(xiàn)段即可
(3)倍長(zhǎng)中線(xiàn):題目中如果出現(xiàn)了三角形的中線(xiàn),方法是將中線(xiàn)延長(zhǎng)一倍,再將端點(diǎn)連結(jié),便可得到全等三角形。
。4)遇到中點(diǎn),考慮中位線(xiàn)或等腰等邊中的三線(xiàn)合一。
3. 與等腰等邊三角形相關(guān)的
(1)考慮三線(xiàn)合一
。2)旋轉(zhuǎn)一定的度數(shù),構(gòu)造全都三角形,等腰一般旋轉(zhuǎn)頂角的度數(shù),等邊旋轉(zhuǎn)60 °
02
四邊形中常見(jiàn)輔助線(xiàn)的添加
特殊四邊形主要包括平行四邊形、矩形、菱形、正方形和梯形。在解決一些和四邊形有關(guān)的問(wèn)題時(shí)往往需要添加輔助線(xiàn)。下面介紹一些輔助線(xiàn)的添加方法。
1. 和平行四邊形有關(guān)的輔助線(xiàn)作法
平行四邊形是最常見(jiàn)的特殊四邊形之一,它有許多可以利用性質(zhì),為了利用這些性質(zhì)往往需要添加輔助線(xiàn)構(gòu)造平行四邊形。
(1) 利用一組對(duì)邊平行且相等構(gòu)造平行四邊形
。2)利用兩組對(duì)邊平行構(gòu)造平行四邊形
。3)利用對(duì)角線(xiàn)互相平分構(gòu)造平行四邊形
2. 與矩形有輔助線(xiàn)作法
(1)計(jì)算型題,一般通過(guò)作輔助線(xiàn)構(gòu)造直角三角形借助勾股定理解決問(wèn)題。
。2)證明或探索題,一般連結(jié)矩形的對(duì)角線(xiàn)借助對(duì)角線(xiàn)相等這一性質(zhì)解決問(wèn)題。和矩形有關(guān)的試題的輔助線(xiàn)的作法較少。
3. 和菱形有關(guān)的輔助線(xiàn)的作法
和菱形有關(guān)的輔助線(xiàn)的作法主要是連接菱形的對(duì)角線(xiàn),借助菱形的判定定理或性質(zhì)定定理解決問(wèn)題。
。1)作菱形的高
(2)連結(jié)菱形的對(duì)角線(xiàn)
4. 與正方形有關(guān)輔助線(xiàn)的作法
正方形是一種完美的幾何圖形,它既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形,有關(guān)正方形的試題較多。解決正方形的問(wèn)題有時(shí)需要作輔助線(xiàn),作正方形對(duì)角線(xiàn)是解決正方形問(wèn)題的常用輔助線(xiàn)。
5. 與梯形有關(guān)的輔助線(xiàn)的作法
和梯形有關(guān)的輔助線(xiàn)的作法是較多的.主要涉及以下幾種類(lèi)型:
。1)作一腰的平行線(xiàn)構(gòu)造平行四邊形和特殊三角形
。2)作梯形的高,構(gòu)造矩形和直角三角形
。3)作一對(duì)角線(xiàn)的平行線(xiàn),構(gòu)造直角三角形和平行四邊形
。4)延長(zhǎng)兩腰構(gòu)成三角形
(5)作兩腰的平行線(xiàn)等
03
圓中常見(jiàn)輔助線(xiàn)的添加
1. 遇到弦時(shí)(解決有關(guān)弦的問(wèn)題時(shí))
常常添加弦心距,或者作垂直于弦的半徑(或直徑)或再連結(jié)過(guò)弦的端點(diǎn)的半徑。
作用:
① 利用垂徑定理
、 利用圓心角及其所對(duì)的弧、弦和弦心距之間的關(guān)系
、 利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求有關(guān)量
2. 遇到有直徑時(shí)
常常添加(畫(huà))直徑所對(duì)的圓周角
作用:利用圓周角的性質(zhì)得到直角或直角三角形
3. 遇到90度的圓周角時(shí)
常常連結(jié)兩條弦沒(méi)有公共點(diǎn)的另一端點(diǎn)
作用:利用圓周角的性質(zhì),可得到直徑
4. 遇到弦時(shí)
常常連結(jié)圓心和弦的兩個(gè)端點(diǎn),構(gòu)成等腰三角形,還可連結(jié)圓周上一點(diǎn)和弦的兩個(gè)端點(diǎn)
作用:
、倏傻玫妊切
②據(jù)圓周角的性質(zhì)可得相等的圓周角
5. 遇到有切線(xiàn)時(shí)
常常添加過(guò)切點(diǎn)的半徑(連結(jié)圓心和切點(diǎn))
作用:利用切線(xiàn)的性質(zhì)定理可得OA⊥AB,得到直角或直角三角形
常常添加連結(jié)圓上一點(diǎn)和切點(diǎn)
作用:可構(gòu)成弦切角,從而利用弦切角定理。
6. 遇到證明某一直線(xiàn)是圓的切線(xiàn)時(shí)
。1) 若直線(xiàn)和圓的公共點(diǎn)還未確定,則常過(guò)圓心作直線(xiàn)的垂線(xiàn)段。
作用:若OA=r,則l為切線(xiàn)
。2) 若直線(xiàn)過(guò)圓上的某一點(diǎn),則連結(jié)這點(diǎn)和圓心(即作半徑)
作用:只需證OA⊥l,則l為切線(xiàn)
。3) 有遇到圓上或圓外一點(diǎn)作圓的切線(xiàn)
7. 遇到兩相交切線(xiàn)時(shí)(切線(xiàn)長(zhǎng))
常常連結(jié)切點(diǎn)和圓心、連結(jié)圓心和圓外的一點(diǎn)、連結(jié)兩切點(diǎn)
作用:據(jù)切線(xiàn)長(zhǎng)及其它性質(zhì),可得到
① 角、線(xiàn)段的等量關(guān)系
② 垂直關(guān)系
、 全等、相似三角形
8. 遇到三角形的內(nèi)切圓時(shí)
連結(jié)內(nèi)心到各三角形頂點(diǎn),或過(guò)內(nèi)心作三角形各邊的垂線(xiàn)段
作用:利用內(nèi)心的性質(zhì),可得
、 內(nèi)心到三角形三個(gè)頂點(diǎn)的連線(xiàn)是三角形的角平分線(xiàn)
、 內(nèi)心到三角形三條邊的距離相等
9. 遇到三角形的外接圓時(shí)
連結(jié)外心和各頂點(diǎn)
作用:外心到三角形各頂點(diǎn)的距離相等
10. 遇到兩圓外離時(shí)
。ń鉀Q有關(guān)兩圓的外、內(nèi)公切線(xiàn)的問(wèn)題)常常作出過(guò)切點(diǎn)的半徑、連心線(xiàn)、平移公切線(xiàn),或平移連心線(xiàn)
作用:
、倮们芯(xiàn)的性質(zhì);
、诶媒庵苯侨切蔚挠嘘P(guān)知識(shí)
11. 遇到兩圓相交時(shí)
常常作公共弦、兩圓連心線(xiàn)、連結(jié)交點(diǎn)和圓心等
作用:
、倮眠B心線(xiàn)的性質(zhì)、解直角三角形有關(guān)知識(shí)
、 利用圓內(nèi)接四邊形的性質(zhì)
③ 利用兩圓公共的圓周的性質(zhì)
、 垂徑定理
12. 遇到兩圓相切時(shí)
常常作連心線(xiàn)、公切線(xiàn)
作用:
、倮眠B心線(xiàn)性質(zhì)
、谇芯(xiàn)性質(zhì)等
13. 遇到三個(gè)圓兩兩外切時(shí)
常常作每?jī)蓚(gè)圓的連心線(xiàn)
作用:可利用連心線(xiàn)性質(zhì)
14. 遇到四邊形對(duì)角互補(bǔ)或兩個(gè)三角形同底并在底的同向且有相等“頂角”時(shí)
常常添加輔助圓
作用:以便利用圓的性質(zhì)
新初三快掃碼關(guān)注
中考網(wǎng)微信公眾號(hào)
每日推送學(xué)習(xí)技巧,學(xué)科知識(shí)點(diǎn)
助你迎接2020年中考!
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪(fǎng)問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看