來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2020-02-05 15:32:37
在數(shù)學考試中,很多同學往往因為時間不夠?qū)е聰?shù)學試卷不能寫完,試卷得分不高。
掌握解題思想可以幫助同學們快速找到解題思路,節(jié)約思考時間。
函數(shù)與方程思想
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關系,通過建立函數(shù)關系運用函數(shù)的圖像和性質(zhì)去分析問題、轉化問題和解決問題。
方程思想,是從問題的數(shù)量關系入手,運用數(shù)學語言將問題轉化為方程或不等式模型去解決問題。
同學們在解題時,可利用轉化思想進行函數(shù)與方程間的相互轉化。
特殊與一般的思想
用這種思想解選擇題有時特別有效,因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,同學們可以直接確定選擇題中的正確選項。
不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
極限思想
極限思想解決問題的一般步驟為:
1、對于所求的未知量,先設法構思一個與它有關的變量;
2、確認這變量通過無限過程的結果就是所求的未知量;
3、構造函數(shù)(數(shù)列)并利用極限計算法,得出結果或利用圖形的極限位置直接計算結果。
分類討論思想
同學們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去。
這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。
引起分類討論的原因很多,數(shù)學概念本身具有多種情形,數(shù)學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。
建議同學們在分類討論解題時,要做到標準統(tǒng)一,不重不漏。
「傻做題」不如「巧做題」,掌握數(shù)學解題思想是解答數(shù)學題時不可缺少的一步。
建議同學們在做題型訓練之前先了解數(shù)學解題思想,掌握解題技巧,并將做過的題目加以劃分,以便在考試中游刃有余。
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看