來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2020-04-02 17:27:10
四、證明兩直線平行
1.垂直于同一直線的各直線平行。
2.同位角相等,內(nèi)錯角相等或同旁內(nèi)角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行于第三邊。
5.梯形的中位線平行于兩底。
6.平行于同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行于第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等于短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大于和它不相鄰的任一內(nèi)角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看