1.一元一次方程:
只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標(biāo)準(zhǔn)形式:
ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a≠0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。
10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:………… 多用于“和,差,倍,分問題”仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法: ………… 多用于“行程問題”利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)
11.列方程解應(yīng)用題的常用公式:
12.做一元一次方程應(yīng)用題的重要方法:
(1)認(rèn)真審題 (審題)
(2)分析已知和未知量
(3)找一個合適的等量關(guān)系
(4)設(shè)一個恰當(dāng)?shù)奈粗獢?shù)
(5)列出合理的方程(列式)
(6)解出方程(解題)
(7)檢驗
(8)寫出答案(作答)
一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看