中考網(wǎng)
全國站
快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數(shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 知識點庫 > 初中數(shù)學知識點 > 幾何 > 正文

2021年中考數(shù)學幾何知識點:幾何定理

來源:網(wǎng)絡來源 作者:中考網(wǎng)編輯 2020-12-14 18:13:15

中考真題

智能內(nèi)容

  中考網(wǎng)整理了關(guān)于2021年中考數(shù)學幾何知識點:幾何定理,希望對同學們有所幫助,僅供參考。

  1、勾股定理(畢達哥拉斯定理)

  2、射影定理(歐幾里得定理)

  3、三角形的三條中線交于一點,并且,各中線被這個點分成2:1的兩部分

  4、四邊形兩邊中心的連線的兩條對角線中心的連線交于一點

  5、間隔的連接六邊形的邊的中心所作出的兩個三角形的重心是重合的。

  6、三角形各邊的垂直一平分線交于一點。

  7、三角形的三條高線交于一點

  8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L,則AH=2OL

  9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。

  10、(九點圓或歐拉圓或費爾巴赫圓)三角形中,三邊中心、從各頂點向其對邊所引垂線的垂足,以及垂心與各頂點連線的中點,這九個點在同一個圓上,

  11、歐拉定理:三角形的外心、重心、九點圓圓心、垂心依次位于同一直線(歐拉線)上

  12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點圓)

  圓周上有四點,過其中任三點作三角形,這四個三角形的九點圓圓心都在同一圓周上,我們把過這四個九點圓圓心的圓叫做圓內(nèi)接四邊形的九點圓。

  13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點,內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長的一半

  14、(旁心)三角形的一個內(nèi)角平分線和另外兩個頂點處的外角平分線交于一點

  15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點為P,則有AB2+AC2=2(AP2+BP2)

  16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

  17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對角線互相垂直時,連接AB中點M和對角線交點E的直線垂直于CD

  18、阿波羅尼斯定理:到兩定點A、B的距離之比為定比m:n(值不為1)的點P,位于將線段AB分成m:n的內(nèi)分點C和外分點D為直徑兩端點的定圓周上

  19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD

  20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,

  21、愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。

  22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。

  23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c的直線的交點分別為P、Q、R則有BPPC×CQQA×ARRB=1

  24、梅涅勞斯定理的逆定理:(略)

  25、梅涅勞斯定理的應用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點共線。

  26、梅涅勞斯定理的應用定理2:過任意△ABC的三個頂點A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點P、Q、R,則P、Q、R三點共線

  27、塞瓦定理:設(shè)△ABC的三個頂點A、B、C的不在三角形的邊或它們的延長線上的一點S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長線交于點P、Q、R,則BPPC×CQQA×ARRB()=1.

  28、塞瓦定理的應用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M

  29、塞瓦定理的逆定理:(略)

   歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學習社
    中考網(wǎng)官方服務號

熱點專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分數(shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分數(shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點高中

北京重點中學

上海重點中學

廣州重點中學

深圳重點中學

天津重點中學

成都重點中學

試題資料

中考壓軸題

中考模擬題

各科練習題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟南中考大事記

知識點

初中數(shù)學知識點

初中物理知識點

初中化學知識點

初中英語知識點

初中語文知識點

中考滿分作文

初中資源

初中語文

初中數(shù)學

初中英語

初中物理

初中化學

中學百科