來源:網絡來源 作者:中考網整合 2021-10-11 21:46:31
角平分線:
把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:
角平分線上的點到該角兩邊的距離相等
判定定理:
到角的兩邊距離相等的點在該角的角平分線上
正方形:
一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:I 對角線相等的菱形 II 鄰邊相等的矩形
3、相交線與平行線
角:
①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。
、谕腔虻冉堑挠嘟/補角相等。
、蹖斀窍嗟。
、芡唤窍嗟/內錯角相等/同旁內角互補,兩直線平行,反之亦然。
4、三角形
三角形:
①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
、谌切稳我鈨蛇呏痛笥诘谌叀H切稳我鈨蛇呏钚∮诘谌。
③三角形三個內角的和等于180度。
④三角形分銳角三角形/直角三角形/鈍角三角形。
、葜苯侨切蔚膬蓚銳角互余。
、奕切沃幸粋內角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
、呷切沃,連接一個頂點與他對邊中點的線段叫做這個三角形的中線。
、嗳切蔚娜龡l角平分線交于一點,三條中線交于一點。
、釓娜切蔚囊粋頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。
、馊切蔚娜龡l高所在的直線交于一點。
圖形的全等:
全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。
全等三角形:
、偃热切蔚膶/角相等。
、跅l件:SSS、AAS、ASA、SAS、HL。
勾股定理:
直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。
5、四邊形
平行四邊形的性質:
、賰山M對邊分別平行的四邊形叫做平行四邊形。
、谄叫兴倪呅尾幌噜彽膬蓚頂點連成的線段叫他的對角線。
、燮叫兴倪呅蔚膶/對角相等。
、芷叫兴倪呅蔚膶蔷互相平分。
平行四邊形的判定條件:
兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。
菱形:
、僖唤M鄰邊相等的平行四邊形是菱形。
②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
、叟卸l件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
、儆幸粋內角是直角的平行四邊形叫做矩形。
、诰匦蔚膶蔷相等,四個角都是直角。
、蹖蔷相等的平行四邊形是矩形。
、苷叫尉哂衅叫兴倪呅,矩形,菱形的一切性質。
⑤一組鄰邊相等的矩形是正方形。
梯形:
①一組對邊平行而另一組對邊不平行的四邊形叫梯形。
②兩條腰相等的梯形叫等腰梯形。
、垡粭l腰和底垂直的梯形叫做直角梯形。
、艿妊菪瓮坏咨系膬蓚內角相等,對角線星等,反之亦然。
多邊形:
、貼邊形的內角和等于(N-2)180度。
、诙噙呅膬冉堑囊贿吪c另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等于360度)
平面圖形的密鋪:
三角形,四邊形和正六邊形可以密鋪。
中心對稱圖形:
、僭谄矫鎯,一個圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。
、谥行膶ΨQ圖形上的每一對對應點所連成的線段都被對稱中心平分。
相關推薦:
2022年中考體育考核注意事項及訓練方法匯總
2022年中考各學科知識點及考點匯總
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2022年中考!
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看