來源:中考網(wǎng)整合 作者:中考網(wǎng)編輯 2016-06-20 14:24:46
四、理解掌握拋物線與坐標(biāo)軸交點的求法.
一般地,點的坐標(biāo)由橫坐標(biāo)和縱坐標(biāo)組成,我們在求拋物線與坐標(biāo)軸的交點時,可優(yōu)先確定其中一個坐標(biāo),再利用解析式求出另一個坐標(biāo).如果方程無實數(shù)根,則說明拋物線與x軸無交點.
從以上求交點的過程可以看出,求交點的實質(zhì)就是解方程,而且與方程的根的判別式聯(lián)系起來,利用根的判別式判定拋物線與x軸的交點個數(shù).答案補充學(xué)理科東西學(xué)會求本質(zhì)做類推
二次函數(shù)都是拋物線函數(shù)(它的函數(shù)軌跡就像平推出去一個球的運動軌跡,當(dāng)然這個不重要)因此把握它的函數(shù)圖像就能把握二次函數(shù)
在函數(shù)圖像中注意幾點(標(biāo)準(zhǔn)式y(tǒng)=ax^2+bx+c,且a不等于0):
1、開口方向與二次項系數(shù)a有關(guān)正則開口向上反之反是。
2、必有一個極值點,也是最值點。如果開口向上,很容易想象這個極值點應(yīng)該是最小點反之反是。且極值點的橫坐標(biāo)為-b/2a。極值點很容易出應(yīng)用題。
3、不一定和x軸有交點。當(dāng)根的判定式Δ=b^2-4ac<0時,沒有交點,也就是ax^2+bx+c=0這個方程式“沒有實數(shù)解”(不能說沒有解!具體你上高中就知道了)如果
Δ=0那么正好有一個交點,也就是我們說的x軸與函數(shù)圖像向切。對應(yīng)的方程有唯一實數(shù)解。Δ>0時,有兩個交點,對應(yīng)方程有2個實數(shù)解。
4、不等式。如果你把上面3點搞清楚了參考函數(shù)圖像不等式你就一定會解了
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看